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ABSTRACT

We consider the problem of learning from sparse and underspecified rewards,
where an agent receives a complex input, such as a natural language instruction,
and needs to generate a complex response, such as an action sequence, while only
receiving binary success-failure feedback. Such success-failure rewards are often
underspecified: they do not distinguish between purposeful and accidental success.
Generalization from underspecified rewards hinges on discounting spurious trajec-
tories that attain accidental success, while learning from sparse feedback requires
effective exploration. We address exploration by using a mode covering direction
of KL divergence to collect a diverse set of successful trajectories, followed by a
mode seeking KL divergence to train a robust policy. We propose Meta Reward
Learning (MeRL) to construct an auxiliary reward function that provides more
refined feedback for learning. The parameters of the auxiliary reward function are
optimized with respect to the validation performance of a trained policy. The MeRL
approach outperforms our alternative reward learning technique based on Bayesian
Optimization, and achieves the state-of-the-art on weakly-supervised semantic
parsing. It improves previous work by 1.2% and 2.4% on WIKITABLEQUESTIONS
and WIKISQL datasets respectively.

1 INTRODUCTION

The remarkable success of reinforcement learning (RL) (Sutton & Barto, 2018) in addressing video
games (Mnih et al., 2015; Silver et al., 2017), continuous control (Lillicrap et al., 2015; Hafner et al.,
2018), and robotic learning (Kalashnikov et al., 2018; Haarnoja et al., 2018) often hinges on the
availability of high-quality and dense reward feedback. However, broadening the applicability of
RL algorithms to real-world environments with sparse and underspecified rewards is an ongoing
challenge, requiring a learning agent to generalize from limited feedback. Figure 1 illustrates two
examples of contextual environments with sparse and underspecified rewards. The rewards are
sparse, since only a few trajectories in the combinatorial space of all trajectories leads to a non-zero
return. In addition, the rewards are underspecified, since the agent may receive a return of 1 for
exploiting spurious patterns in the environment. We assert that the generalization performance of an

x=“Right Up Up Right”
R(a)=1[Execute(•,a)=?]

a1=(→, ↑, ↑,→)
a2=(←,→,→, ↑, ↑,→)
a3=(↑,→,→, ↑)
R(a1)=R(a2)=x(a3) = 1

Rank Nation Gold
1 USA 10
2 GBR 9
3 CHN 8
4 RUS 2
5 GER 2
6 JPN 2
7 FRA 2

x=“Which nation won the most
gold medal?” y=“USA”
R(a)=1[Execute(a) = “USA”]

a1=argmax row(Gold).Nation
a2=argmin row(Rank).Nation
a3=first row().Nation
R(a1)=R(a2)=R(a3)=1

(a) Instruction Following (b) Semantic Parsing

Figure 1: (a) Instruction following in a simple maze. A blind agent is presented with a sequence of (Left, Right,
Up, Down) instructions. Given the input text, the agent (•) performs a sequence of actions, and only receives a
reward of 1 if it reaches the goal (?). (b) Semantic parsing from question-answer pairs. An agent is presented
with a natural language question x and is asked to generate a SQL-like program a. The agent receives a reward
of 1 if execution of a program a on the relevant data table leads to the correct answer (e.g., USA). The reward is
underspecified because spurious outputs (e.g., a2,a3) can also achieve a reward of 1.
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Figure 2: Overview of the proposed approach. We em-
ploy (1) mode covering exploration to collect a diverse
set of successful trajectories in a memory buffer; (2)
Meta-learning or Bayesian optimization to learn an aux-
iliary reward function to discount spurious trajectories.
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Figure 3: Fraction of total contexts for which at least
k programs (1 ≤ k ≤ 100) are discovered during
the course of training using the IML and MAPO
(i.e., RER) objectives on weakly-supervised semantic
parsing datasets (a) WIKITABLEQUESTIONS and (b)
WIKISQL.

agent trained in this setting hinges on (1) effective exploration to find successful trajectories, and (2)
discounting spurious trajectories to learn a generalizable behavior.

To mitigate challenges of learning from sparse and underspecified rewards, this paper proposes:

• a principled exploration strategy in which a mode covering direction of KL divergence
is used to learn a high entropy exploration policy to collect a diverse set of successful
trajectories. Then, given such trajectories, a mode seeking direction of KL divergence is
used to learn a robust policy with favorable generalization performance.
• an automatic strategy to discover a rich trajectory-level reward function to help a learning

agent discount spurious trajectories and improve generalization. We utilize both gradient-
based Meta-Learning (Finn et al., 2017; Maclaurin et al., 2015) and Bayesian Optimiza-
tion (Snoek et al., 2012) for reward learning, where the parameters of the auxiliary reward
function are optimized in an outer loop to maximize generalization performance of the
trained policy.

We evaluate our overall approach (outlined in Figure 2) on the instruction following task and on two
real world weakly-supervised benchmarks (Pasupat & Liang, 2015; Zhong et al., 2017). In all these
experiments, we observe a significant benefit from the mode covering exploration strategy and its
combination with Meta Reward Learning (MeRL) resulting in state-of-the-art performance.

2 FORMULATION

Let x denote a complex input, such as a natural language question or instruction, which places an
agent in some context. Let a denote a multivariate response, such as an action trajectory that the agent
should produce. Let R(a | x, y)1 ∈ {0, 1} denote a contextual success-failure feedback that uses
some side information y to decide whether a is successful in the context of x and y. For instance, y
may be some goal specification, e.g., the answer (denotation) in Figure 1b, or the 2D coordinates of
the goal in Figure 1a. To simplify the equations, we drop the conditioning of the return function on x
and y and express the return function as R(a).

Our aim is to optimize the parameters of a stochastic policy π(a | x) according to a training set in
order to maximize the empirical success rate of a policy on novel test contexts. For evaluation, the
agent is required to only provide a single action trajectory â for each context x, accomplished via
approximate inference: â ≈ argmax

a∈A(x)

π(a | x) .

LetA(x) denote the combinatorial set of all plausible action trajectories for a contextx, and letA+(x)
denote a subset ofA(x) comprising successful trajectories, i.e.,A+(x) ≡ {a ∈ A(x) |R(a |x, y) =
1}.

1For simplicity of the exposition, we assume that R(a | x, y) is deterministic, even though our results are
applicable to stochastic rewards as well.
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3 MODE COVERING EXPLORATION (MAPOX)

To address the problem of policy learning from binary success-failure feedback, previous work has
proposed the following objective functions:
I IML (Iterative Maximum Likelihood) estimation (Liang et al., 2017; Abolafia et al., 2018) is an
iterative process for optimizing a policy based on

OIML =
∑
x∈D

1

|A+(x)|
∑

a+∈A+(x)

log π(a+ | x) . (1)

The key idea is to replace A+(x) in (1) with a buffer of successful trajectories collected so far,
denoted B+(x). While the policy is being optimized based on (1), one can also perform exploration
by drawing i.i.d. samples from π(· | x) and adding such samples to B+(x) if their rewards are
positive.

I RER (Regularized Expected Return) is the common objective function used in RL,

ORER =
∑
x∈D

τH(π(· | x)) +
∑

a∈A(x)

R(a)π(a | x), (2)

where τ ≥ 0 andH denotes Shannon Entropy. Entropy regularization often helps with stability of
policy optimization leading to better solutions (Williams & Peng, 1991). The MAPO (Liang et al.,
2018) estimator used in our experiments is based on this objective.

The IML and RER objective can be expressed using mode covering and mode seeking directions
of KL divergence respectively (for more details, see section A.2 in the supplementary material).
Our key intuition is that for the purpose of exploration and collecting a diverse set of successful
trajectories (regardless of whether they are spurious or not) the mode covering behavior of IML
should be advantageous over the mode seeking behaviour of MAPO (i.e. RER). We conduct some
experiments to evaluate this intuition, and as shown in Figure 3, we find that IML generally discovers
many more successful trajectories than MAPO.

Based on these findings, we develop a novel combination of IML and MAPO, which we call MAPOX
(MAPO eXploratory). The key difference between MAPO and MAPOX is in the way the initial
memory buffer of programs is initialized. In addition to using random search to populate an initial
buffer of programs as in (Liang et al., 2018), we also use IML to find a large set of diverse trajectories,
which are passed to MAPO to select from. In our experiments, we observe a notable gain from this
form of mode covering exploration combining the benefits of IML and MAPO.

4 LEARNING REWARDS WITHOUT DEMONSTRATION

For the general category of problems involving learning with underspecified rewards, our intuition
is that fitting a policy on spurious trajectories is disadvantageous for the policy’s generalization to
unseen contexts. Accordingly, we put forward the following hypothesis: One should be able to learn
an auxiliary reward function based on the performance of the policy trained with that reward function
on a held-out validation set. We propose two specific approaches to implement this high level idea:
(1) based on gradient based Meta-Learning (MAML) (Finn et al., 2017) (Algorithm 1) (2) using
BayesOpt (Snoek et al., 2012) as a gradient-free black box optimizer (Algorithm 2). Refer to the
supplementary material for a qualitative comparison of these two approaches.

Notation. Dtrain and Dval denote the training and validation datasets respectively. B+train represents
the training memory buffer containing successful trajectories (based on underspecified rewards)
for contexts in Dtrain. We employ a feature-based terminal reward function Rφ parameterized by
the weight vector φ. For a given context x, the auxiliary reward is only non-zero for successful
trajectories. Specifically, for a feature vector f(a,x) for the context x and trajectory a and the
underspecified rewards R(a | x, y), i.e., Rφ(a | x, y) = φTf(a,x)R(a | x, y).

4.1 META REWARD-LEARNING (MERL)

At each iteration of MeRL, we simultaneously update the policy parameters θ and the auxiliary
reward parameters φ. The policy πθ is trained to maximize the training objectiveOtrain (3) computed
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using the training dataset and the auxiliary rewards Rφ while the auxiliary rewards are optimized to
maximize the meta-training objective Oval (4) on the validation dataset:

Otrain(πθ, Rφ) =
∑

x∈Dtrain

∑
a∈B+

train(x)

Rφ(a)πθ(a | x) +
∑

x∈Dtrain

τH(πθ(· | x)), (3)

Oval(π) =
∑
x∈Dval

∑
a∈B+

val(x)

R(a)π(a | x). (4)

An overview of MeRL is presented in Algorithm 1 in the supplementary material. MeRL requires
Oval to be a differentiable function of φ. To tackle this issue, we compute Oval using only samples
from the buffer B+val containing successful trajectories for contexts in Dval. Since we don’t have
access to ground-truth programs, we use beam search in non-interactive environments and greedy
decoding in interactive environments to generate successful trajectories using policies trained with
the underspecified rewards only.

The validation objective is computed using the policy obtained after one gradient step update on the
training objective and therefore, the auxiliary rewards only indirectly affect the validation objective
via the updated policy parameters θ′ as shown in equations (5) and (6):

θ′(φ) = θ − α∇θOtrain(πθ, Rφ), (5)

∇φOval(πθ′) = ∇θ′Oval(πθ′)∇φθ′(φ). (6)

4.2 BAYESIAN OPTIMIZATION REWARD-LEARNING (BORL)

At each trial in BoRL, we sample auxiliary reward parameters by maximizing the acquisition function
computed using the posterior distribution over the validation objective. After sampling the reward
parameters, we optimize the ORER objective on the training dataset for a fixed number of iterations.
Once the training is finished, we evaluate the policy on the validation dataset, which is used to update
the posterior distribution. BoRL is closely related to the previous work on learning metric-optimized
example weights (Zhao et al., 2018) for supervised learning. An overview of BoRL is presented in
Algorithm 2 in the supplementary material.

BoRL does not require the validation objective Oval to be differentiable with respect to the auxiliary
reward parameters, therefore we can directly optimize the evaluation metric we care about. For
example, in non-interactive environments, the reward parameters are optimized using the beam search
accuracy on the validation setDval. In this work, we use Batched Gaussian Process Bandits (Desautels
et al., 2014) employing a Matérn kernel with automatic relevance determination (Rasmussen, 2004)
and the expected improvement acquisition function (Močkus, 1975).

5 EXPERIMENTS

We evaluate our approach on two weakly-supervised semantic parsing benchmarks, WIKITABLE-
QUESTIONS (Pasupat & Liang, 2015) and WIKISQL 2 (Zhong et al., 2017). Additionally, we
demonstrate the negative effect of under-specified rewards on the generalization ability of an agent
in the instruction following task (refer to section 5.1). For all our experiments, we report the mean
accuracy and standard deviation based on 5 runs with identical hyperparameters.

5.1 INSTRUCTION FOLLOWING TASK

In this task (see Figure 1a), we compare the following setups for an agent trained with the RER (2)
objective using the same neural architecture with a fixed replay buffer:
I Oracle Reward: This agent is trained using the replay buffer containing only the gold trajectories.
I Underspecified Reward: For each environment, we added a fixed number of additional spurious
trajectories (trajectories which reach the goal without following the language instruction) to the oracle
replay buffer.

2Note that we only make use of weak-supervision in WIKISQL and therefore, our methods are not directly
comparable to methods trained using strong supervision in the form of (question, program) pairs on WIKISQL.
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Table 1: Performance of the trained agent with access
to different type of rewards in the instruction following
task.

Reward structure Dev Test

Underspecified 73.0 (± 3.4) 69.8 (± 2.5)
Underspecified + Auxiliary (BoRL) 75.3 (± 1.6) 72.3 (± 2.2)
Underspecified + Auxiliary (MeRL) 83.0 (± 3.6) 74.5 (± 2.5)
Oracle Reward 95.7 (± 1.3) 92.6 (± 1.0)

Table 2: Results on WIKITABLEQUESTIONS.

Improvement
Method Dev Test on MAPO

MAPO 42.2 (± 0.6) 42.9 (± 0.5) –
MAPOX 42.6 (± 0.5) 43.3 (± 0.4) +0.4
BoRL 42.9 (± 0.6) 43.8 (± 0.2) +0.9
MeRL 43.2 (± 0.5) 44.1 (± 0.2) +1.2

Table 3: Results on WIKISQL using weak supervision.

Improvement
Method Dev Test on MAPO

MAPO 71.8 (± 0.4) 72.4 (± 0.3) –
MAPOX 74.5 (± 0.4) 74.2 (± 0.4) +1.8
BoRL 74.6 (± 0.4) 74.2 (± 0.2) +1.8
MeRL 74.9 (± 0.1) 74.8 (± 0.2) +2.4

MAPO (Ens. of 5) - 74.2 –
MeRL (Ens. of 5) - 76.9 +2.7

Table 4: Comparison to previous approaches for WIK-
ITABLEQUESTIONS

Method Ensemble Size Test

Pasupat & Liang (2015) - 37.1
Neelakantan et al. (2016) 15 37.7
Haug et al. (2018) 15 38.7
Zhang et al. (2017) - 43.7
MAPO (Liang et al., 2018) 10 46.3
MeRL 10 46.9

I Underspecified + Auxiliary Reward: In this case, we use the replay buffer with spurious trajec-
tories similar to the underspecified reward setup, however, we additionally learn an auxiliary reward
function using MeRL and BoRL (see Algorithm 1 and 2 respectively). For more details, refer to
section A.6 in the supplementary material.

All the agents trained with different types of reward signal achieve an accuracy of approximately 100%
on the training set. However, as shown in Table 1, the generalization performance of Oracle rewards
> Underspecified + Auxiliary rewards > Underspecified rewards. Using our Meta Reward-Learning
(MeRL) approach, we are able to bridge the gap between Underspecified and Oracle rewards, which
confirms our hypothesis that the generalization performance of an agent can serve as a reasonable
proxy to reward learning.

5.2 WEAKLY-SUPERVISED SEMANTIC PARSING

On WIKISQL and WIKITABLEQUESTIONS benchmarks, the task is to generate an SQL-like program
given a natural language question such that when the program is executed on a relevant data table, it
produces the correct answer. We only have access to weak supervision in the form of question-answer
pairs (see Figure 1b). The performance of an agent trained to solve this task is measured by the
number of correctly answered questions on a held-out test set.

We compare the following variants of our technique with the current state-of-the-art in weakly
supervised semantic parsing, Memory Augmented Policy Optimization (MAPO) (Liang et al., 2018):
I MAPOX: Combining the exploration ability of IML with generalization ability of MAPO, MAPOX
runs MAPO starting from a memory buffer B+train containing all the high reward trajectories generated
during the training of IML and MAPO using underspecified rewards only.
I BoRL (MAPOX + Bayesian Optimization Reward-Learning): As opposed to MAPOX, BoRL
optimizes the MAPO objective only on the highest ranking trajectories present in the memory buffer
B+train based on a parametric auxiliary reward function learned using BayesOpt (see Algorithm 2).
I MeRL (MAPOX + Meta Reward-Learning): Similar to BoRL, MeRL optimizes the MAPO
objective with an auxiliary reward function simultaneously learned with the agent’s policy using
meta-learning (see Algorithm 1).

Results. We present the results on weakly-supervised semantic parsing in Table 2 and Table 3.
We observe that MAPOX noticeably improves upon MAPO on both datasets by performing better
exploration. In addition, MeRL and BoRL both improve upon MAPOX in WIKITABLEQUESTIONS
demonstrating that even when a diverse set of candidates from IML are available, one still benefits
from our framework for automatic reward learning. On WIKISQL we do not see any gain from
BoRL on top of MAPOX, however, MeRL improves upon MAPOX by 0.6% accuracy. Table 3 also
shows that even with ensembling 5 models, MeRL significantly outperforms MAPO. Finally, Table 4
compares our approach with previous works on WIKITABLEQUESTIONS.
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