
Published in the proceedings of the Workshop on “Structure & Priors in Reinforcement Learning”
at ICLR 2019

LEARNING POWERFUL POLICIES BY USING CONSIS-
TENT DYNAMICS MODEL

Shagun Sodhani, Anirudh Goyal, Tristan Deleu, Jian Tang
Mila, University of Montreal
sshagunsodhani@gmail.com

Yoshua Bengio
CIFAR Senior Fellow and Mila, University of Montreal

Sergey Levine
University of California, Berkeley

ABSTRACT

Model-based Reinforcement Learning approaches have the promise of being sam-
ple efficient. Much of the progress in learning dynamics models in RL has been
made by learning models via supervised learning. There is enough evidence that
humans build a model of the environment, not only by observing the environ-
ment but also by interacting with the environment. Interaction with the environ-
ment allows humans to carry out experiments: taking actions that help uncover
true causal relationships which can be used for building better dynamics models.
Analogously, we would expect such interactions to be helpful for a learning agent
while learning to model the environment dynamics. In this paper, we build upon
this intuition, by using an auxiliary cost function to ensure consistency between
what the agent observes (by acting in the real world) and what it imagines (by
acting in the “learned” world). We consider several tasks - Mujoco based con-
trol tasks and Atari games - and show that the proposed approach helps to train
powerful policies and better dynamics models.

1 INTRODUCTION

Reinforcement Learning (RL) consists of two fundamental problems: learning and planning. Learn-
ing refers to improving the agent’s policy by interacting with the environment while planning refers
to improving the policy without interacting with the environment. These problems evolve into the
dichotomy of model-free methods (which primarily rely on learning) and model-based methods
(which primarily rely on planning). While model-free methods have shown many successes (1; 2; 3),
their high sample complexity remains a major challenge. In contrast, model-based RL methods aim
to improve the sample efficiency by learning a dynamics model of the environment. But these meth-
ods have several caveats. If the policy takes the learner to an unexplored state in the environment, the
learner’s model could make errors in estimating the environment dynamics, leading to sub-optimal
behavior. This problem is referred to as the model-bias problem (4).

To make predictions about the future, dynamics models are unrolled step by step leading to “com-
pounding errors” (5; 6): an error in modeling the environment at time t affects the predicted ob-
servations at all subsequent steps. In the model-based approaches, the dynamics model is usually
trained with supervised learning techniques and the state transition tuples (collected as the agent
acts in the environment) become the supervising dataset. Hence the process of learning the model
has no control over what kind of data is produced for its training. That is, from the perspective of
learning the dynamics model, the agent just observes the environment and does not “interact” with
it. On the other hand, there’s enough evidence that humans learn the environment dynamics not
just by observing the environment but also by interacting with the environment (7; 8). Interaction is
useful as it allows the agent to carry out experiments in the real world which is clearly a desirable
characteristic when building dynamics models.

This leads to an interesting possibility. Consider a learning agent training to optimize an expected
returns signal in a given environment. At a given timestep t, the agent is in some state st ∈ S (State
space). It takes an action at ∈ A (action space) according to its policy at ∼ πt(at|st), receives a

1



Published in the proceedings of the Workshop on “Structure & Priors in Reinforcement Learning”
at ICLR 2019

reward rt (from the environment) and transitions to a new state st+1. The agent is trying to maximize
its expected returns and has two pathways for improving its behaviour:

1. Close-loop path: The agent interacts with the environment acting in the real world at every
step. The agent starts in state s0 and is in state st at time t. It chooses an action at to
perform (using its policy πt), performs the chosen action, and receives a reward rt. It then
observes the environment to obtain the new state st+1, uses this state to decide which action
at+1 to perform next and so on.

2. Open-loop path: The agent interacts with the learned dynamics model by imagining to act
and predicts the future observations (or future belief state in case of state space models).
The agent starts in state s0 and is in state st at time t. Note that the agent “imagines” itself
to be in state sIt and can not access the true state. It chooses an action at to perform (using
its policy πt), acts in the “learner’s” world (dynamics model) and imagines to transition
to the new state sIt+1. The current “imagined” state is used to predict the next “imagined”
state. During these “imagined” roll-outs, the agent only interacts with the learner’s “world”
and not with the environment.

The agent could use both the pathways simultaneously. It could, in parallel, (i) build a model of the
environment (dynamics model) and (ii) engage in interaction with the real environment as shown
in Figure 1. As such, the two pathways may not be consistent given the challenges in learning a
multi-step dynamics model. By consistent, we mean the behavior of state transitions along the two
paths should be indistinguishable. Had the two pathways would be consistent and we could say that
the learner’s dynamics model is grounded in reality. To that end, our contributions are the following:

1. We propose to ensure consistency by using an auxiliary loss which explicitly matches the
generative behavior (from the open loop) and the observed behavior (from the closed loop)
as closely as possible.

2. We evaluate our approach on 7 Mujoco based continuous control tasks and 4 Atari games
and observe that the proposed approach helps to train more powerful policies.

3. We compare our proposed approach to the state-of-the-art state space models (9) and
show that the proposed method outperforms the sophisticated baselines despite being very
straightforward.

Figure 1: The agent, in parallel, (i) Builds a model of the world and (ii) Engages in an interaction
with the world. The agent can now learn the model dynamics while interacting with the environment.
We show that making these two pathways consistent helps in simultaneously learning a better policy
and a more powerful generative model.

2 CONSISTENCY CONSTRAINT

We impose the consistency constraint by encoding the state transitions (during both open-loop and
closed-loop) into fixed-size real vectors using recurrent networks and enforce the output of the recur-
rent networks to be similar in the two cases. Encoding the sequence can be seen as abstracting out
the per-step state transitions into how the dynamics of the environment evolve over time. This way,

2



Published in the proceedings of the Workshop on “Structure & Priors in Reinforcement Learning”
at ICLR 2019

we do not focus on mimicking each state but the high-level dynamics of the state transitions and the
dynamics model focuses only on information that makes the multi-step predictions indistinguishable
from the actual observations from the environment (figure 1). We minimize the L2 error between
the encoding of predicted future observations as coming from the learner’s dynamics model (during
open-loop) and the encoding of the future observations as coming from the environment (during
closed loop).

Let us assume that the agent started in state s0 and that a0:T−1 denote the sequence of actions that
the agent takes in the environment from time t = 0 to T − 1 resulting in state sequence s1:T that
the agent transitions through. Alternatively, the agent could have “imagined” a trajectory of state
transitions by performing the actions a0:T−1 in the learner’s dynamics model. This would result in
the sequence of states sI1:T . The consistency loss is computed as follows:

lcc(θ, φ) = ‖enc(s1:T ))− enc(sI1:T ))‖ (1)
where ‖‖ denotes the L2 norm, enc(s1:T )) = RNN([s1, s2, ..., sT ]) and enc(sI1:T )) =
RNN([sI1, s

I
2, ..., s

I
T ]). The agent which is trained with the consistency constraint is referred to

as the consistent dynamics agent. The overall loss for such a learning agent can be written as fol-
lows:

ltotal(θ, φ) = lrl(θ, φ) + αlcc(θ, φ) (2)

θ refers to the parameters of the agent’s transition model f̂ and φ refers to the parameters of the
agent’s policy π. The first component, lrl(θ, φ), corresponds to the RL objective i.e maximizing
expected return and is referred to as the RL loss. The second component, lcc(θ, φ), corresponds
to the loss associated with the consistency constraint and is referred to as consistency loss. α is a
hyper-parameter to scale the consistency loss component with respect to the RL loss.

We consider both observation space models (where the environment is modeled as a Markov De-
cision Process) and state-space models where the learning agent encodes the observation into a
high-dimensional latent space. State space models are useful when the observation space is high
dimensional, as in case of pixel-space observations. For the state space models, the agent learns to
model the environment dynamics in the latent space.

3 RATIONALE BEHIND USING CONSISTENCY LOSS

Our goal is to provide a mechanism for the agent to have a direct “interaction” between the policy
and the dynamics model. This interaction is different from the standard RL approaches where the
trajectories sampled by the policy are used to train the dynamics model. In those cases, the model has
no control over what kind of data is produced for its training and there is no (“direct”) mechanism
for the dynamics model to affect the policy, hence a “direct interaction” between the policy and
the model is missing. A practical instantiation of this idea is the consistency loss where we ensure
consistency between the predictions (from the dynamics model) and the actual observations (from
the environment). This simple baseline works surprisingly well compared to the state-of-the-art
methods (as demonstrated by our experiments).

Our approach is different from just learning a k-step prediction model as in our case, we have two
learning signals for the policy: The one from the reinforcement learning loss (to maximize return)
and the other due to consistency constraint. This provides a mechanism where learning a model can
itself change the policy (thus “interacting” with the policy). In the standard case, the state transition
pairs (collected as the agent acts in the environment) become the supervising dataset for learning the
model and there is no feedback from the model learning process to the policy.

4 EXPERIMENTAL RESULTS

We evaluate how well does the proposed Consistent Dynamics model compares against the state-of-
the-art approaches for observation space models and state space models. All the results are reported
after averaging over 3 random seeds. Note that our simplistic approach outperforms the state-of-the-
art Learning to Query model (9).

3



Published in the proceedings of the Workshop on “Structure & Priors in Reinforcement Learning”
at ICLR 2019

4.1 OBSERVATION SPACE MODELS

0 500 1000 1500 2000 2500
Number of Batches

0
500

1000
1500
2000
2500
3000
3500
4000

Av
er

ag
e 

Ep
iso

di
c 

Re
tu

rn
Ant

Consistent Dynamics
Mb-Mf

0 1000 2000 3000 4000
Number of Batches

0

200

400

600

800

1000

1200

Humanoid

Consistent Dynamics
Mb-Mf

0 500 1000 1500 2000
Number of Batches

1000

2000

3000

4000

5000

Half-Cheetah

Consistent Dynamics
Mb-Mf

0 20 40 60 80 100 120
Number of Batches

50.0
52.5
55.0
57.5
60.0
62.5
65.0
67.5

Swimmer

Consistent Dynamics
Mb-Mf

Figure 2: Comparison of the average episodic returns, for Mb-Mf agent and consistent dynamics
agent on the Ant, Humanoid, Half-Cheetah and Swimmer environments (respectively). Note that
the results are averaged over 100 batches for Ant, Humanoid and Half-Cheetah and 10 batches for
Swimmer.

We use the hybrid Model-based and Model-free (Mb-Mf ) algorithm (10) as the baseline model.
The policy and the dynamics model are learned jointly. We consider 4 Mujoco environments from
RLLab (11): Ant (S ∈ R41, A ∈ R8), Humanoid (S ∈ R142, A ∈ R21), Half-Cheetah (S ∈ R23,
A ∈ R6) and Swimmer (S ∈ R17, A ∈ R3). For computing the consistency loss, the learner’s
dynamics model is unrolled for k = 20 steps and GRU model is used(12).

Figure 3: Average episodic return on Ant and Humanoid environments, for a model-free agent, the
Mb-Mf agent without any consistency constraint, and the Consistent Dynamics (Mb-Mf + consis-
tency constraint) that are trained with a consistency constraint over time horizons of length 5 and
20. Note that the results are averaged over 100 batches for both Ant and Humanoid.

Figure 2 compares the average episodic returns for the baseline Mb-Mf model (does not use consis-
tency loss) and the proposed consistent dynamics model (Mb-Mf model + consistency loss). Using
consistency helps to learn a better policy in fewer updates for all the environments.

We study the effect of changing k (during training) on the average episodic return for the Ant and
Humanoid tasks, by training the agents with k ∈ {5, 20}. As an ablation, we also include the case
of training the policy without using a model, in a fully model-free fashion. We would expect that a
smaller value of k would push the average episodic return of the consistent dynamics model closer
to the Mb-Mf case. Figure 3 shows that a higher value of k (k = 20) leads to better returns for both
tasks.

4.2 STATE SPACE MODELS

We use the state-of-the-art Learning to Query model (9) as the baseline. We train an expert policy for
sampling high-reward trajectories which are used to train the policy (using imitation learning) and
the dynamics model (by max-likelihood). We consider 3 continuous control tasks from the OpenAI
Gym suite (13): Half-Cheetah, Fetch-Push and Reacher. During the open loop, the dynamics model
is unrolled for k = 10 steps for Half-Cheetah and k = 5 for other tasks.

In figure 4, we compare the imitation learning loss for the Consistent Dynamics agent (Learning
to Query agent with consistency loss) and the baseline (Learning to Query agent) and show that
consistency constraint helps to learn a more powerful policy. Sampling from recurrent dynamics
model is prone to compounding errors as even small prediction errors can compound when sampling

4


	Introduction
	Consistency Constraint
	Rationale Behind Using Consistency Loss
	Experimental Results
	Observation Space Models
	State Space Models
	Atari Environment

	Conclusion

